1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
//! Kernel object basis.
//!
//! # Create new kernel object
//!
//! - Create a new struct.
//! - Make sure it has a field named `base` with type [`KObjectBase`].
//! - Implement [`KernelObject`] trait with [`impl_kobject`] macro.
//!
//! ## Example
//! ```
//! use zircon_object::object::*;
//! extern crate alloc;
//!
//! pub struct SampleObject {
//!    base: KObjectBase,
//! }
//! impl_kobject!(SampleObject);
//! ```
//!
//! # Implement methods for kernel object
//!
//! ## Constructor
//!
//! Each kernel object should have a constructor returns `Arc<Self>`
//! (or a pair of them, e.g. [`Channel`]).
//!
//! Don't return `Self` since it must be created on heap.
//!
//! ### Example
//! ```
//! use zircon_object::object::*;
//! use std::sync::Arc;
//!
//! pub struct SampleObject {
//!     base: KObjectBase,
//! }
//! impl SampleObject {
//!     pub fn new() -> Arc<Self> {
//!         Arc::new(SampleObject {
//!             base: KObjectBase::new(),
//!         })
//!     }
//! }
//! ```
//!
//! ## Interior mutability
//!
//! All kernel objects use the [interior mutability pattern] :
//! each method takes either `&self` or `&Arc<Self>` as the first argument.
//!
//! To handle mutable variable, create another **inner structure**,
//! and put it into the object with a lock wrapped.
//!
//! ### Example
//! ```
//! use zircon_object::object::*;
//! use std::sync::Arc;
//! use lock::Mutex;
//!
//! pub struct SampleObject {
//!     base: KObjectBase,
//!     inner: Mutex<SampleObjectInner>,
//! }
//! struct SampleObjectInner {
//!     x: usize,
//! }
//!
//! impl SampleObject {
//!     pub fn set_x(&self, x: usize) {
//!         let mut inner = self.inner.lock();
//!         inner.x = x;
//!     }
//! }
//! ```
//!
//! # Downcast trait to concrete type
//!
//! [`KernelObject`] inherit [`downcast_rs::DowncastSync`] trait.
//! You can use `downcast_arc` method to downcast `Arc<dyn KernelObject>` to `Arc<T: KernelObject>`.
//!
//! ## Example
//! ```
//! use zircon_object::object::*;
//! use std::sync::Arc;
//!
//! let object: Arc<dyn KernelObject> = DummyObject::new();
//! let concrete = object.downcast_arc::<DummyObject>().unwrap();
//! ```
//!
//! [`Channel`]: crate::ipc::Channel
//! [`KObjectBase`]: KObjectBase
//! [`KernelObject`]: KernelObject
//! [`impl_kobject`]: impl_kobject
//! [`downcast_rs::DowncastSync`]: downcast_rs::DowncastSync
//! [interior mutability pattern]: https://doc.rust-lang.org/reference/interior-mutability.html

use {
    crate::signal::*,
    alloc::{boxed::Box, string::String, sync::Arc, vec::Vec},
    core::{
        fmt::Debug,
        future::Future,
        pin::Pin,
        sync::atomic::*,
        task::{Context, Poll},
    },
    downcast_rs::{impl_downcast, DowncastSync},
    lock::Mutex,
};

pub use {super::*, handle::*, rights::*, signal::*};

mod handle;
mod rights;
mod signal;

/// Common interface of a kernel object.
///
/// Implemented by [`impl_kobject`] macro.
///
/// [`impl_kobject`]: impl_kobject
pub trait KernelObject: DowncastSync + Debug {
    /// Get object's KoID.
    fn id(&self) -> KoID;
    /// Get the name of the type of the kernel object.
    fn type_name(&self) -> &str;
    /// Get object's name.
    fn name(&self) -> alloc::string::String;
    /// Set object's name.
    fn set_name(&self, name: &str);
    /// Get the signal status.
    fn signal(&self) -> Signal;
    /// Assert `signal`.
    fn signal_set(&self, signal: Signal);
    /// Deassert `signal`.
    fn signal_clear(&self, signal: Signal);
    /// Change signal status: first `clear` then `set` indicated bits.
    ///
    /// All signal callbacks will be called.
    fn signal_change(&self, clear: Signal, set: Signal);
    /// Add `callback` for signal status changes.
    ///
    /// The `callback` is a function of `Fn(Signal) -> bool`.
    /// It returns a bool indicating whether the handle process is over.
    /// If true, the function will never be called again.
    fn add_signal_callback(&self, callback: SignalHandler);
    /// Attempt to find a child of the object with given KoID.
    ///
    /// If the object is a *Process*, the *Threads* it contains may be obtained.
    ///
    /// If the object is a *Job*, its (immediate) child *Jobs* and the *Processes*
    /// it contains may be obtained.
    ///
    /// If the object is a *Resource*, its (immediate) child *Resources* may be obtained.
    fn get_child(&self, _id: KoID) -> ZxResult<Arc<dyn KernelObject>> {
        Err(ZxError::WRONG_TYPE)
    }
    /// Attempt to get the object's peer.
    ///
    /// An object peer is the opposite endpoint of a `Channel`, `Socket`, `Fifo`, or `EventPair`.
    fn peer(&self) -> ZxResult<Arc<dyn KernelObject>> {
        Err(ZxError::NOT_SUPPORTED)
    }
    /// If the object is related to another (such as the other end of a channel, or the parent of
    /// a job), returns the KoID of that object, otherwise returns zero.
    fn related_koid(&self) -> KoID {
        0
    }
    /// Get object's allowed signals.
    fn allowed_signals(&self) -> Signal {
        Signal::USER_ALL
    }
}

impl_downcast!(sync KernelObject);

/// The base struct of a kernel object.
pub struct KObjectBase {
    /// The object's KoID.
    pub id: KoID,
    inner: Mutex<KObjectBaseInner>,
}

/// The mutable part of `KObjectBase`.
#[derive(Default)]
struct KObjectBaseInner {
    name: String,
    signal: Signal,
    signal_callbacks: Vec<SignalHandler>,
}

impl Default for KObjectBase {
    fn default() -> Self {
        KObjectBase {
            id: Self::new_koid(),
            inner: Default::default(),
        }
    }
}

impl KObjectBase {
    /// Create a new kernel object base.
    pub fn new() -> Self {
        Self::default()
    }

    /// Create a kernel object base with initial `signal`.
    pub fn with_signal(signal: Signal) -> Self {
        KObjectBase::with(Default::default(), signal)
    }

    /// Create a kernel object base with `name`.
    pub fn with_name(name: &str) -> Self {
        KObjectBase::with(name, Default::default())
    }

    /// Create a kernel object base with both signal and name
    pub fn with(name: &str, signal: Signal) -> Self {
        KObjectBase {
            id: Self::new_koid(),
            inner: Mutex::new(KObjectBaseInner {
                name: String::from(name),
                signal,
                ..Default::default()
            }),
        }
    }

    /// Generate a new KoID.
    fn new_koid() -> KoID {
        static KOID: AtomicU64 = AtomicU64::new(1024);
        KOID.fetch_add(1, Ordering::SeqCst)
    }

    /// Get object's name.
    pub fn name(&self) -> String {
        self.inner.lock().name.clone()
    }

    /// Set object's name.
    pub fn set_name(&self, name: &str) {
        self.inner.lock().name = String::from(name);
    }

    /// Get the signal status.
    pub fn signal(&self) -> Signal {
        self.inner.lock().signal
    }

    /// Change signal status: first `clear` then `set` indicated bits.
    ///
    /// All signal callbacks will be called.
    pub fn signal_change(&self, clear: Signal, set: Signal) {
        let mut inner = self.inner.lock();
        let old_signal = inner.signal;
        inner.signal.remove(clear);
        inner.signal.insert(set);
        let new_signal = inner.signal;
        if new_signal == old_signal {
            return;
        }
        inner.signal_callbacks.retain(|f| !f(new_signal));
    }

    /// Assert `signal`.
    pub fn signal_set(&self, signal: Signal) {
        self.signal_change(Signal::empty(), signal);
    }

    /// Deassert `signal`.
    pub fn signal_clear(&self, signal: Signal) {
        self.signal_change(signal, Signal::empty());
    }

    /// Add `callback` for signal status changes.
    ///
    /// The `callback` is a function of `Fn(Signal) -> bool`.
    /// It returns a bool indicating whether the handle process is over.
    /// If true, the function will never be called again.
    pub fn add_signal_callback(&self, callback: SignalHandler) {
        let mut inner = self.inner.lock();
        // Check the callback immediately, in case that a signal arrives just before the call of
        // `add_signal_callback` (since lock is acquired inside it) and the callback is not triggered
        // in time.
        if !callback(inner.signal) {
            inner.signal_callbacks.push(callback);
        }
    }
}

impl dyn KernelObject {
    /// Asynchronous wait for one of `signal`.
    pub fn wait_signal(self: &Arc<Self>, signal: Signal) -> impl Future<Output = Signal> {
        #[must_use = "wait_signal does nothing unless polled/`await`-ed"]
        struct SignalFuture {
            object: Arc<dyn KernelObject>,
            signal: Signal,
            first: bool,
        }

        impl Future for SignalFuture {
            type Output = Signal;

            fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
                let current_signal = self.object.signal();
                if !(current_signal & self.signal).is_empty() {
                    return Poll::Ready(current_signal);
                }
                if self.first {
                    self.object.add_signal_callback(Box::new({
                        let signal = self.signal;
                        let waker = cx.waker().clone();
                        move |s| {
                            if (s & signal).is_empty() {
                                return false;
                            }
                            waker.wake_by_ref();
                            true
                        }
                    }));
                    self.first = false;
                }
                Poll::Pending
            }
        }

        SignalFuture {
            object: self.clone(),
            signal,
            first: true,
        }
    }

    /// Once one of the `signal` asserted, push a packet with `key` into the `port`,
    ///
    /// It's used to implement `sys_object_wait_async`.
    #[allow(unsafe_code)]
    pub fn send_signal_to_port_async(self: &Arc<Self>, signal: Signal, port: &Arc<Port>, key: u64) {
        let current_signal = self.signal();
        if !(current_signal & signal).is_empty() {
            port.push(PortPacketRepr {
                key,
                status: ZxError::OK,
                data: PayloadRepr::Signal(PacketSignal {
                    trigger: signal,
                    observed: current_signal,
                    count: 1,
                    timestamp: 0,
                    _reserved1: 0,
                }),
            });
            return;
        }
        self.add_signal_callback(Box::new({
            let port = port.clone();
            move |s| {
                if (s & signal).is_empty() {
                    return false;
                }
                port.push(PortPacketRepr {
                    key,
                    status: ZxError::OK,
                    data: PayloadRepr::Signal(PacketSignal {
                        trigger: signal,
                        observed: s,
                        count: 1,
                        timestamp: 0,
                        _reserved1: 0,
                    }),
                });
                true
            }
        }));
    }
}

/// Asynchronous wait signal for multiple objects.
pub fn wait_signal_many(
    targets: &[(Arc<dyn KernelObject>, Signal)],
) -> impl Future<Output = Vec<Signal>> {
    #[must_use = "wait_signal_many does nothing unless polled/`await`-ed"]
    struct SignalManyFuture {
        targets: Vec<(Arc<dyn KernelObject>, Signal)>,
        first: bool,
    }

    impl SignalManyFuture {
        fn happened(&self, current_signals: &[Signal]) -> bool {
            self.targets
                .iter()
                .zip(current_signals)
                .any(|(&(_, desired), &current)| !(current & desired).is_empty())
        }
    }

    impl Future for SignalManyFuture {
        type Output = Vec<Signal>;

        fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
            let current_signals: Vec<_> =
                self.targets.iter().map(|(obj, _)| obj.signal()).collect();
            if self.happened(&current_signals) {
                return Poll::Ready(current_signals);
            }
            if self.first {
                for (object, signal) in self.targets.iter() {
                    object.add_signal_callback(Box::new({
                        let signal = *signal;
                        let waker = cx.waker().clone();
                        move |s| {
                            if (s & signal).is_empty() {
                                return false;
                            }
                            waker.wake_by_ref();
                            true
                        }
                    }));
                }
                self.first = false;
            }
            Poll::Pending
        }
    }

    SignalManyFuture {
        targets: Vec::from(targets),
        first: true,
    }
}

/// Macro to auto implement `KernelObject` trait.
#[macro_export]
macro_rules! impl_kobject {
    ($class:ident $( $fn:tt )*) => {
        impl $crate::object::KernelObject for $class {
            fn id(&self) -> KoID {
                self.base.id
            }
            fn type_name(&self) -> &str {
                stringify!($class)
            }
            fn name(&self) -> alloc::string::String {
                self.base.name()
            }
            fn set_name(&self, name: &str){
                self.base.set_name(name)
            }
            fn signal(&self) -> Signal {
                self.base.signal()
            }
            fn signal_set(&self, signal: Signal) {
                self.base.signal_set(signal);
            }
            fn signal_clear(&self, signal: Signal) {
                self.base.signal_clear(signal);
            }
            fn signal_change(&self, clear: Signal, set: Signal) {
                self.base.signal_change(clear, set);
            }
            fn add_signal_callback(&self, callback: $crate::object::SignalHandler) {
                self.base.add_signal_callback(callback);
            }
            $( $fn )*
        }
        impl core::fmt::Debug for $class {
            fn fmt(
                &self,
                f: &mut core::fmt::Formatter<'_>,
            ) -> core::result::Result<(), core::fmt::Error> {
                use $crate::object::KernelObject;
                f.debug_tuple(&stringify!($class))
                    .field(&self.id())
                    .field(&self.name())
                    .finish()
            }
        }
    };
}

/// Define a pair of kcounter (create, destroy),
/// and a helper struct `CountHelper` which increases the counter on construction and drop.
#[macro_export]
macro_rules! define_count_helper {
    ($class:ident) => {
        struct CountHelper(());
        impl CountHelper {
            fn new() -> Self {
                $crate::kcounter!(CREATE_COUNT, concat!(stringify!($class), ".create"));
                CREATE_COUNT.add(1);
                CountHelper(())
            }
        }
        impl Drop for CountHelper {
            fn drop(&mut self) {
                $crate::kcounter!(DESTROY_COUNT, concat!(stringify!($class), ".destroy"));
                DESTROY_COUNT.add(1);
            }
        }
    };
}

/// The type of kernel object ID.
pub type KoID = u64;

/// The type of kernel object signal handler.
pub type SignalHandler = Box<dyn Fn(Signal) -> bool + Send>;

/// Empty kernel object. Just for test.
pub struct DummyObject {
    base: KObjectBase,
}

impl_kobject!(DummyObject);

impl DummyObject {
    /// Create a new `DummyObject`.
    pub fn new() -> Arc<Self> {
        Arc::new(DummyObject {
            base: KObjectBase::new(),
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use async_std::sync::Barrier;
    use std::time::Duration;

    #[async_std::test]
    async fn wait() {
        let object = DummyObject::new();
        let barrier = Arc::new(Barrier::new(2));
        async_std::task::spawn({
            let object = object.clone();
            let barrier = barrier.clone();
            async move {
                async_std::task::sleep(Duration::from_millis(20)).await;

                // Assert an irrelevant signal to test the `false` branch of the callback for `READABLE`.
                object.signal_set(Signal::USER_SIGNAL_0);
                object.signal_clear(Signal::USER_SIGNAL_0);
                object.signal_set(Signal::READABLE);
                barrier.wait().await;

                object.signal_set(Signal::WRITABLE);
            }
        });
        let object: Arc<dyn KernelObject> = object;

        let signal = object.wait_signal(Signal::READABLE).await;
        assert_eq!(signal, Signal::READABLE);
        barrier.wait().await;

        let signal = object.wait_signal(Signal::WRITABLE).await;
        assert_eq!(signal, Signal::READABLE | Signal::WRITABLE);
    }

    #[async_std::test]
    async fn wait_many() {
        let objs = [DummyObject::new(), DummyObject::new()];
        let barrier = Arc::new(Barrier::new(2));
        async_std::task::spawn({
            let objs = objs.clone();
            let barrier = barrier.clone();
            async move {
                async_std::task::sleep(Duration::from_millis(20)).await;

                objs[0].signal_set(Signal::READABLE);
                barrier.wait().await;

                objs[1].signal_set(Signal::WRITABLE);
            }
        });
        let obj0: Arc<dyn KernelObject> = objs[0].clone();
        let obj1: Arc<dyn KernelObject> = objs[1].clone();

        let signals = wait_signal_many(&[
            (obj0.clone(), Signal::READABLE),
            (obj1.clone(), Signal::READABLE),
        ])
        .await;
        assert_eq!(signals, [Signal::READABLE, Signal::empty()]);
        barrier.wait().await;

        let signals = wait_signal_many(&[
            (obj0.clone(), Signal::WRITABLE),
            (obj1.clone(), Signal::WRITABLE),
        ])
        .await;
        assert_eq!(signals, [Signal::READABLE, Signal::WRITABLE]);
    }

    #[test]
    fn test_trait_with_dummy() {
        let dummy = DummyObject::new();
        assert_eq!(dummy.name(), String::from(""));
        dummy.set_name("test");
        assert_eq!(dummy.name(), String::from("test"));
        dummy.signal_set(Signal::WRITABLE);
        assert_eq!(dummy.signal(), Signal::WRITABLE);
        dummy.signal_change(Signal::WRITABLE, Signal::READABLE);
        assert_eq!(dummy.signal(), Signal::READABLE);

        assert_eq!(dummy.get_child(0).unwrap_err(), ZxError::WRONG_TYPE);
        assert_eq!(dummy.peer().unwrap_err(), ZxError::NOT_SUPPORTED);
        assert_eq!(dummy.related_koid(), 0);
        assert_eq!(dummy.allowed_signals(), Signal::USER_ALL);

        assert_eq!(
            format!("{:?}", dummy),
            format!("DummyObject({}, \"test\")", dummy.id())
        );
    }
}